Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477878

RESUMO

Glycosylation is essential to facilitate cell-cell adhesion and differentiation. We determined the role of the dolichol phosphate mannosyltransferase (DPM) complex, a central regulator for glycosylation, for desmosomal adhesive function and epidermal differentiation. Deletion of the key molecule of the DPM complex, DPM1, in human keratinocytes resulted in weakened cell-cell adhesion, impaired localization of the desmosomal components desmoplakin and desmoglein-2, and led to cytoskeletal organization defects in human keratinocytes. In a 3D organotypic human epidermis model, loss of DPM1 caused impaired differentiation with abnormally increased cornification, reduced thickness of non-corneal layers, and formation of intercellular gaps in the epidermis. Using proteomic approaches, SERPINB5 was identified as a DPM1-dependent interaction partner of desmoplakin. Mechanistically, SERPINB5 reduced desmoplakin phosphorylation at serine 176, which was required for strong intercellular adhesion. These results uncover a novel role of the DPM complex in connecting desmosomal adhesion with epidermal differentiation.


Assuntos
Queratinócitos , Manosiltransferases , Proteômica , Inibidores de Serino Proteinase , Humanos , Adesão Celular , Diferenciação Celular , Desmoplaquinas , Dolicóis , Fosfatos , Inibidores de Serino Proteinase/metabolismo , Manosiltransferases/metabolismo
2.
Clin Cancer Res ; 30(3): 586-599, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37992313

RESUMO

PURPOSE: Myeloproliferative neoplasms (MPN) dysregulate JAK2 signaling. Because clinical JAK2 inhibitors have limited disease-modifying effects, type II JAK2 inhibitors such as CHZ868 stabilizing inactive JAK2 and reducing MPN clones, gain interest. We studied whether MPN cells escape from type ll inhibition. EXPERIMENTAL DESIGN: MPN cells were continuously exposed to CHZ868. We used phosphoproteomic analyses and ATAC/RNA sequencing to characterize acquired resistance to type II JAK2 inhibition, and targeted candidate mediators in MPN cells and mice. RESULTS: MPN cells showed increased IC50 and reduced apoptosis upon CHZ868 reflecting acquired resistance to JAK2 inhibition. Among >2,500 differential phospho-sites, MAPK pathway activation was most prominent, while JAK2-STAT3/5 remained suppressed. Altered histone occupancy promoting AP-1/GATA binding motif exposure associated with upregulated AXL kinase and enriched RAS target gene profiles. AXL knockdown resensitized MPN cells and combined JAK2/AXL inhibition using bemcentinib or gilteritinib reduced IC50 to levels of sensitive cells. While resistant cells induced tumor growth in NOD/SCID gamma mice despite JAK2 inhibition, JAK2/AXL inhibition largely prevented tumor progression. Because inhibitors of MAPK pathway kinases such as MEK are clinically used in other malignancies, we evaluated JAK2/MAPK inhibition with trametinib to interfere with AXL/MAPK-induced resistance. Tumor growth was halted similarly to JAK2/AXL inhibition and in a systemic cell line-derived mouse model, marrow infiltration was decreased supporting dependency on AXL/MAPK. CONCLUSIONS: We report on a novel mechanism of AXL/MAPK-driven escape from type II JAK2 inhibition, which is targetable at different nodes. This highlights AXL as mediator of acquired resistance warranting inhibition to enhance sustainability of JAK2 inhibition in MPN.


Assuntos
Aminopiridinas , Benzimidazóis , Inibidores de Janus Quinases , Transtornos Mieloproliferativos , Animais , Camundongos , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Camundongos Endogâmicos NOD , Camundongos SCID , Janus Quinase 2/metabolismo , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/genética , Transtornos Mieloproliferativos/metabolismo
3.
Elife ; 122023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37934560

RESUMO

Plasmodium falciparum accounts for the majority of over 600,000 malaria-associated deaths annually. Parasites resistant to nearly all antimalarials have emerged and the need for drugs with alternative modes of action is thus undoubted. The FK506-binding protein PfFKBP35 has gained attention as a promising drug target due to its high affinity to the macrolide compound FK506 (tacrolimus). Whilst there is considerable interest in targeting PfFKBP35 with small molecules, a genetic validation of this factor as a drug target is missing and its function in parasite biology remains elusive. Here, we show that limiting PfFKBP35 levels are lethal to P. falciparum and result in a delayed death-like phenotype that is characterized by defective ribosome homeostasis and stalled protein synthesis. Our data furthermore suggest that FK506, unlike the action of this drug in model organisms, exerts its antiproliferative activity in a PfFKBP35-independent manner and, using cellular thermal shift assays, we identify putative FK506-targets beyond PfFKBP35. In addition to revealing first insights into the function of PfFKBP35, our results show that FKBP-binding drugs can adopt non-canonical modes of action - with major implications for the development of FK506-derived molecules active against Plasmodium parasites and other eukaryotic pathogens.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Tacrolimo , Antibacterianos , Sistemas de Liberação de Medicamentos , Homeostase , Proteínas de Ligação a Tacrolimo
4.
Biomaterials ; 303: 122387, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37977007

RESUMO

Endochondral ossification (ECO), the major ossification process during embryogenesis and bone repair, involves the formation of a cartilaginous template remodelled into a functional bone organ. Adipose-derived stromal cells (ASC), non-skeletal multipotent progenitors from the stromal vascular fraction (SVF) of human adipose tissue, were shown to recapitulate ECO and generate bone organs in vivo when primed into a hypertrophic cartilage tissue (HCT) in vitro. However, the reproducibility of ECO was limited and the major triggers remain unknown. We studied the effect of the expansion of cells and maturation of HCT on the induction of the ECO process. SVF cells or expanded ASC were seeded onto collagen sponges, cultured in chondrogenic medium for 3-6 weeks and implanted ectopically in nude mice to evaluate their bone-forming capacities. SVF cells from all tested donors formed mature HCT in 3 weeks whereas ASC needed 4-5 weeks. A longer induction increased the degree of maturation of the HCT, with a gradually denser cartilaginous matrix and increased mineralization. This degree of maturation was highly predictive of their bone-forming capacity in vivo, with ECO achieved only for an intermediate maturation degree. In parallel, expanding ASC also resulted in an enrichment of the stromal fraction characterized by a rapid change of their proteomic profile from a quiescent to a proliferative state. Inducing quiescence rescued their chondrogenic potential. Our findings emphasize the role of monolayer expansion and chondrogenic maturation degree of ASC on ECO and provides a simple, yet reproducible and effective approach for bone formation to be tested in specific clinical models.


Assuntos
Condrogênese , Osteogênese , Camundongos , Animais , Humanos , Camundongos Nus , Proteômica , Reprodutibilidade dos Testes , Células Estromais , Diferenciação Celular , Células Cultivadas
5.
Cell Rep Med ; 4(4): 101002, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37044095

RESUMO

A genome-wide PiggyBac transposon-mediated screen and a resistance screen in a PIK3CAH1047R-mutated murine tumor model reveal NF1 loss in mammary tumors resistant to the phosphatidylinositol 3-kinase α (PI3Kα)-selective inhibitor alpelisib. Depletion of NF1 in PIK3CAH1047R breast cancer cell lines and a patient-derived organoid model shows that NF1 loss reduces sensitivity to PI3Kα inhibition and correlates with enhanced glycolysis and lower levels of reactive oxygen species (ROS). Unexpectedly, the antioxidant N-acetylcysteine (NAC) sensitizes NF1 knockout cells to PI3Kα inhibition and reverts their glycolytic phenotype. Global phospho-proteomics indicates that combination with NAC enhances the inhibitory effect of alpelisib on mTOR signaling. In public datasets of human breast cancer, we find that NF1 is frequently mutated and that such mutations are enriched in metastases, an indication for which use of PI3Kα inhibitors has been approved. Our results raise the attractive possibility of combining PI3Kα inhibition with NAC supplementation, especially in patients with drug-resistant metastases associated with NF1 loss.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Fosfatidilinositol 3-Quinase , Acetilcisteína/farmacologia , Classe I de Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/genética
6.
Viruses ; 15(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36680249

RESUMO

Oncotoxic proteins such as the non-structural protein 1 (NS1), a constituent of the rodent parvovirus H1 (H1-PV), offer a novel approach for treatment of tumors that are refractory to other treatments. In the present study, mutated NS1 variants were designed and tested with respect to their oncotoxic potential in human hepatocellular carcinoma cell lines. We introduced single point mutations of previously described important residues of the wild-type NS1 protein and a deletion of 114 base pairs localized within the N-terminal domain of NS1. Cell-viability screening with HepG2 and Hep3B hepatocarcinoma cells transfected with the constructed NS1-mutants led to identification of the single-amino acid NS1-mutant NS1-T585E, which led to a 30% decrease in cell viability as compared to NS1 wildtype. Using proteomics analysis, we could identify new interaction partners and signaling pathways of NS1. We could thus identify new oncotoxic NS1 variants and gain insight into the modes of action of NS1, which is exclusively toxic to human cancer cells. Our in-vitro studies provide mechanistic explanations for the observed oncolytic effects. Expression of NS1 variants had no effect on cell viability in NS1 unresponsive control HepG2 cells or primary mouse hepatocytes. The availability of new NS1 variants in combination with a better understanding of their modes of action offers new possibilities for the design of innovative cancer treatment strategies.


Assuntos
Parvovirus , Proteínas não Estruturais Virais , Animais , Humanos , Camundongos , Linhagem Celular , Neoplasias Hepáticas/genética , Infecções por Parvoviridae , Parvovirus/genética , Proteínas não Estruturais Virais/metabolismo
7.
EMBO J ; 41(21): e110192, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36149731

RESUMO

The nuclear envelope has long been considered primarily a physical barrier separating nuclear and cytosolic contents. More recently, nuclear compartmentalization has been shown to have additional regulatory functions in controlling gene expression. A sizeable proportion of protein-coding mRNAs is more prevalent in the nucleus than in the cytosol, suggesting regulated mRNA trafficking to the cytosol, but the mechanisms underlying controlled nuclear mRNA retention remain unclear. Here, we provide a comprehensive map of the subcellular localization of mRNAs in mature mouse cortical neurons, and reveal that transcripts retained in the nucleus comprise the majority of stable intron-retaining mRNAs. Systematically probing the fate of nuclear transcripts upon neuronal stimulation, we found opposite effects on sub-populations of transcripts: while some are targeted for degradation, others complete splicing to generate fully mature mRNAs that are exported to the cytosol and mediate rapid increases in protein levels. Finally, different forms of stimulation mobilize distinct groups of intron-retaining transcripts, with this selectivity arising from the activation of specific signaling pathways. Overall, our findings uncover a cue-specific control of intron retention as a major regulator of acute remodeling of the neuronal transcriptome.


Assuntos
Núcleo Celular , Transcriptoma , Animais , Camundongos , Íntrons , Núcleo Celular/metabolismo , RNA Mensageiro/metabolismo , Neurônios/metabolismo
8.
Science ; 376(6598): eabm9506, 2022 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-35679397

RESUMO

INTRODUCTION The eukaryotic nucleus pro-tects the genome and is enclosed by the two membranes of the nuclear envelope. Nuclear pore complexes (NPCs) perforate the nuclear envelope to facilitate nucleocytoplasmic transport. With a molecular weight of ∼120 MDa, the human NPC is one of the larg-est protein complexes. Its ~1000 proteins are taken in multiple copies from a set of about 30 distinct nucleoporins (NUPs). They can be roughly categorized into two classes. Scaf-fold NUPs contain folded domains and form a cylindrical scaffold architecture around a central channel. Intrinsically disordered NUPs line the scaffold and extend into the central channel, where they interact with cargo complexes. The NPC architecture is highly dynamic. It responds to changes in nuclear envelope tension with conforma-tional breathing that manifests in dilation and constriction movements. Elucidating the scaffold architecture, ultimately at atomic resolution, will be important for gaining a more precise understanding of NPC function and dynamics but imposes a substantial chal-lenge for structural biologists. RATIONALE Considerable progress has been made toward this goal by a joint effort in the field. A synergistic combination of complementary approaches has turned out to be critical. In situ structural biology techniques were used to reveal the overall layout of the NPC scaffold that defines the spatial reference for molecular modeling. High-resolution structures of many NUPs were determined in vitro. Proteomic analysis and extensive biochemical work unraveled the interaction network of NUPs. Integra-tive modeling has been used to combine the different types of data, resulting in a rough outline of the NPC scaffold. Previous struc-tural models of the human NPC, however, were patchy and limited in accuracy owing to several challenges: (i) Many of the high-resolution structures of individual NUPs have been solved from distantly related species and, consequently, do not comprehensively cover their human counterparts. (ii) The scaf-fold is interconnected by a set of intrinsically disordered linker NUPs that are not straight-forwardly accessible to common structural biology techniques. (iii) The NPC scaffold intimately embraces the fused inner and outer nuclear membranes in a distinctive topol-ogy and cannot be studied in isolation. (iv) The conformational dynamics of scaffold NUPs limits the resolution achievable in structure determination. RESULTS In this study, we used artificial intelligence (AI)-based prediction to generate an exten-sive repertoire of structural models of human NUPs and their subcomplexes. The resulting models cover various domains and interfaces that so far remained structurally uncharac-terized. Benchmarking against previous and unpublished x-ray and cryo-electron micros-copy structures revealed unprecedented accu-racy. We obtained well-resolved cryo-electron tomographic maps of both the constricted and dilated conformational states of the hu-man NPC. Using integrative modeling, we fit-ted the structural models of individual NUPs into the cryo-electron microscopy maps. We explicitly included several linker NUPs and traced their trajectory through the NPC scaf-fold. We elucidated in great detail how mem-brane-associated and transmembrane NUPs are distributed across the fusion topology of both nuclear membranes. The resulting architectural model increases the structural coverage of the human NPC scaffold by about twofold. We extensively validated our model against both earlier and new experimental data. The completeness of our model has enabled microsecond-long coarse-grained molecular dynamics simulations of the NPC scaffold within an explicit membrane en-vironment and solvent. These simulations reveal that the NPC scaffold prevents the constriction of the otherwise stable double-membrane fusion pore to small diameters in the absence of membrane tension. CONCLUSION Our 70-MDa atomically re-solved model covers >90% of the human NPC scaffold. It captures conforma-tional changes that occur during dilation and constriction. It also reveals the precise anchoring sites for intrinsically disordered NUPs, the identification of which is a prerequisite for a complete and dy-namic model of the NPC. Our study exempli-fies how AI-based structure prediction may accelerate the elucidation of subcellular ar-chitecture at atomic resolution. [Figure: see text].


Assuntos
Inteligência Artificial , Complexo de Proteínas Formadoras de Poros Nucleares , Poro Nuclear , Transporte Ativo do Núcleo Celular , Microscopia Crioeletrônica , Humanos , Simulação de Dinâmica Molecular , Poro Nuclear/química , Complexo de Proteínas Formadoras de Poros Nucleares/química , Proteômica
10.
Nucleic Acids Res ; 50(6): 3096-3114, 2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35234914

RESUMO

The mammalian cleavage factor I (CFIm) has been implicated in alternative polyadenylation (APA) in a broad range of contexts, from cancers to learning deficits and parasite infections. To determine how the CFIm expression levels are translated into these diverse phenotypes, we carried out a multi-omics analysis of cell lines in which the CFIm25 (NUDT21) or CFIm68 (CPSF6) subunits were either repressed by siRNA-mediated knockdown or over-expressed from stably integrated constructs. We established that >800 genes undergo coherent APA in response to changes in CFIm levels, and they cluster in distinct functional classes related to protein metabolism. The activity of the ERK pathway traces the CFIm concentration, and explains some of the fluctuations in cell growth and metabolism that are observed upon CFIm perturbations. Furthermore, multiple transcripts encoding proteins from the miRNA pathway are targets of CFIm-dependent APA. This leads to an increased biogenesis and repressive activity of miRNAs at the same time as some 3' UTRs become shorter and presumably less sensitive to miRNA-mediated repression. Our study provides a first systematic assessment of a core set of APA targets that respond coherently to changes in CFIm protein subunit levels (CFIm25/CFIm68). We describe the elicited signaling pathways downstream of CFIm, which improve our understanding of the key role of CFIm in integrating RNA processing with other cellular activities.


Assuntos
MicroRNAs , Poliadenilação , Regiões 3' não Traduzidas , Animais , Fator de Especificidade de Clivagem e Poliadenilação/genética , Fibrinogênio/genética , Mamíferos/genética , MicroRNAs/genética , Fatores de Poliadenilação e Clivagem de mRNA/genética
11.
J Cell Biol ; 221(1)2022 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-34749397

RESUMO

ADP-ribosylation factors (Arfs) are small GTPases regulating membrane traffic in the secretory pathway. They are closely related and appear to have overlapping functions, regulators, and effectors. The functional specificity of individual Arfs and the extent of redundancy are still largely unknown. We addressed these questions by CRISPR/Cas9-mediated genomic deletion of the human class I (Arf1/3) and class II (Arf4/5) Arfs, either individually or in combination. Most knockout cell lines were viable with slight growth defects only when lacking Arf1 or Arf4. However, Arf1+4 and Arf4+5 could not be deleted simultaneously. Class I Arfs are nonessential, and Arf4 alone is sufficient for viability. Upon Arf1 deletion, the Golgi was enlarged, and recruitment of vesicle coats decreased, confirming a major role of Arf1 in vesicle formation at the Golgi. Knockout of Arf4 caused secretion of ER-resident proteins, indicating specific defects in coatomer-dependent ER protein retrieval by KDEL receptors. The knockout cell lines will be useful tools to study other Arf-dependent processes.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Técnicas de Inativação de Genes , Complexo de Golgi/metabolismo , Forma Celular , Retículo Endoplasmático/metabolismo , Deleção de Genes , Complexo de Golgi/ultraestrutura , Células HeLa , Humanos
12.
STAR Protoc ; 2(2): 100480, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33982014

RESUMO

Circulating tumor cells (CTCs) are precursors of metastasis in various cancer types. Many aspects regarding CTC biology remain poorly understood. Here, we describe mass spectrometric analysis of CTCs from a breast cancer xenograft mouse model, including procedures comprising CTC enrichment, separation of different CTC subpopulations, and their quantitative proteomic assessment. This protocol aims to facilitate the identification of protein content dynamics in human CTCs that are physiologically shed from tumor-bearing xenografts, providing a framework for investigating metastasis biology. For complete details on the use and execution of this protocol, please refer to Donato et al. (2020).


Assuntos
Neoplasias da Mama/química , Espectrometria de Massas/métodos , Células Neoplásicas Circulantes/química , Proteoma/análise , Animais , Feminino , Xenoenxertos , Humanos , Camundongos , Transplante de Neoplasias , Proteoma/química , Proteômica
13.
Nat Protoc ; 15(9): 2956-2979, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32737464

RESUMO

Bottom-up mass spectrometry-based proteomics relies on protein digestion and peptide purification. The application of such methods to broadly available clinical samples such as formalin-fixed and paraffin-embedded (FFPE) tissues requires reversal of chemical crosslinking and the removal of reagents that are incompatible with mass spectrometry. Here, we describe in detail a protocol that combines tissue disruption by ultrasonication, heat-induced antigen retrieval and two alternative methods for efficient detergent removal to enable quantitative proteomic analysis of limited amounts of FFPE material. To show the applicability of our approach, we used hepatocellular carcinoma (HCC) as a model system. By combining the described protocol with laser-capture microdissection, we were able to quantify the intra-tumor heterogeneity of a tumor specimen on the proteome level using a single slide with tissue of 10-µm thickness. We also demonstrate broader applicability to other tissues, including human gallbladder and heart. The procedure described in this protocol can be completed within 8 d.


Assuntos
Formaldeído , Espectrometria de Massas , Inclusão em Parafina , Proteômica/métodos , Fixação de Tecidos , Carcinoma Hepatocelular/patologia , Humanos , Neoplasias Hepáticas/patologia
14.
Genome Biol ; 21(1): 44, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32102681

RESUMO

BACKGROUND: The speed of translation elongation is primarily determined by the abundance of tRNAs. Thus, the codon usage influences the rate with which individual mRNAs are translated. As the nature of tRNA pools and modifications can vary across biological conditions, codon elongation rates may also vary, leading to fluctuations in the protein production from individual mRNAs. Although it has been observed that functionally related mRNAs exhibit similar codon usage, presumably to provide an effective way to coordinate expression of multiple proteins, experimental evidence for codon-mediated translation efficiency modulation of functionally related mRNAs in specific conditions is scarce and the associated mechanisms are still debated. RESULTS: Here, we reveal that mRNAs whose expression increases during cell proliferation are enriched in rare codons, poorly adapted to tRNA pools. Ribosome occupancy profiling and proteomics measurements show that upon increased cell proliferation, transcripts enriched in rare codons undergo a higher translation boost than transcripts with common codons. Re-coding of a fluorescent reporter with rare codons increased protein output by ~ 30% relative to a reporter re-coded with common codons. Although the translation capacity of proliferating cells was higher compared to resting cells, we did not find evidence for the regulation of individual tRNAs. Among the models that were proposed so far to account for codon-mediated translational regulation upon changing conditions, the one that seems most consistent with our data involves a global upregulation of ready-to-translate tRNAs, which we show can lead to a higher increase in the elongation velocity at rare codons compared to common codons. CONCLUSIONS: We propose that the alleviation of translation bottlenecks in rapidly dividing cells enables preferential upregulation of pro-proliferation proteins, encoded by mRNAs that are enriched in rare codons.


Assuntos
Proliferação de Células/genética , Uso do Códon , Elongação Traducional da Cadeia Peptídica , Animais , Camundongos , Células NIH 3T3 , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Transferência/genética , RNA de Transferência/metabolismo
15.
Nat Cell Biol ; 21(11): 1382-1392, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31685990

RESUMO

In the unicellular eukaryote Saccharomyces cerevisiae, Cln3-cyclin-dependent kinase activity enables Start, the irreversible commitment to the cell division cycle. However, the concentration of Cln3 has been paradoxically considered to remain constant during G1, due to the presumed scaling of its production rate with cell size dynamics. Measuring metabolic and biosynthetic activity during cell cycle progression in single cells, we found that cells exhibit pulses in their protein production rate. Rather than scaling with cell size dynamics, these pulses follow the intrinsic metabolic dynamics, peaking around Start. Using a viral-based bicistronic construct and targeted proteomics to measure Cln3 at the single-cell and population levels, we show that the differential scaling between protein production and cell size leads to a temporal increase in Cln3 concentration, and passage through Start. This differential scaling causes Start in both daughter and mother cells across growth conditions. Thus, uncoupling between two fundamental physiological parameters drives cell cycle commitment.


Assuntos
Ciclinas/genética , Pontos de Checagem da Fase G1 do Ciclo Celular/genética , Regulação Fúngica da Expressão Gênica , Biossíntese de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Divisão Celular , Ciclinas/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Proteômica/métodos , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Análise de Célula Única , Transcrição Gênica
16.
Mol Cell Proteomics ; 17(4): 810-825, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29363612

RESUMO

The interpatient variability of tumor proteomes has been investigated on a large scale but many tumors display also intratumoral heterogeneity regarding morphological and genetic features. It remains largely unknown to what extent the local proteome of tumors intrinsically differs. Here, we used hepatocellular carcinoma as a model system to quantify both inter- and intratumor heterogeneity across human patient specimens with spatial resolution. We defined proteomic features that distinguish neoplastic from the directly adjacent nonneoplastic tissue, such as decreased abundance of NADH dehydrogenase complex I. We then demonstrated the existence of intratumoral variations in protein abundance that re-occur across different patient samples, and affect clinically relevant proteins, even in the absence of obvious morphological differences or genetic alterations. Our work demonstrates the suitability and the benefits of using mass spectrometry-based proteomics to analyze diagnostic tumor specimens with spatial resolution. Data are available via ProteomeXchange with identifier PXD007052.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Neoplasias/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Fígado/metabolismo , Masculino , Espectrometria de Massas , Camundongos , Pessoa de Meia-Idade , Proteômica
17.
Mol Syst Biol ; 13(7): 936, 2017 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-28743795

RESUMO

The arrangement of proteins into complexes is a key organizational principle for many cellular functions. Although the topology of many complexes has been systematically analyzed in isolation, their molecular sociology in situ remains elusive. Here, we show that crude cellular extracts of a eukaryotic thermophile, Chaetomium thermophilum, retain basic principles of cellular organization. Using a structural proteomics approach, we simultaneously characterized the abundance, interactions, and structure of a third of the C. thermophilum proteome within these extracts. We identified 27 distinct protein communities that include 108 interconnected complexes, which dynamically associate with each other and functionally benefit from being in close proximity in the cell. Furthermore, we investigated the structure of fatty acid synthase within these extracts by cryoEM and this revealed multiple, flexible states of the enzyme in adaptation to its association with other complexes, thus exemplifying the need for in situ studies. As the components of the captured protein communities are known-at both the protein and complex levels-this study constitutes another step forward toward a molecular understanding of subcellular organization.


Assuntos
Chaetomium/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Microambiente Celular , Reagentes de Ligações Cruzadas , Microscopia Crioeletrônica , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/metabolismo , Ácido Graxo Sintase Tipo II/ultraestrutura , Proteínas Fúngicas/ultraestrutura , Espectrometria de Massas , Modelos Moleculares , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Proteômica , Frações Subcelulares/química , Frações Subcelulares/metabolismo , Biologia de Sistemas
18.
EMBO J ; 36(18): 2698-2709, 2017 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-28739580

RESUMO

In eukaryotic cells, RNA polymerase I (Pol I) synthesizes precursor ribosomal RNA (pre-rRNA) that is subsequently processed into mature rRNA. To initiate transcription, Pol I requires the assembly of a multi-subunit pre-initiation complex (PIC) at the ribosomal RNA promoter. In yeast, the minimal PIC includes Pol I, the transcription factor Rrn3, and Core Factor (CF) composed of subunits Rrn6, Rrn7, and Rrn11. Here, we present the cryo-EM structure of the 18-subunit yeast Pol I PIC bound to a transcription scaffold. The cryo-EM map reveals an unexpected arrangement of the DNA and CF subunits relative to Pol I. The upstream DNA is positioned differently than in any previous structures of the Pol II PIC. Furthermore, the TFIIB-related subunit Rrn7 also occupies a different location compared to the Pol II PIC although it uses similar interfaces as TFIIB to contact DNA. Our results show that although general features of eukaryotic transcription initiation are conserved, Pol I and Pol II use them differently in their respective transcription initiation complexes.


Assuntos
RNA Polimerase I/química , RNA Polimerase I/metabolismo , Saccharomyces cerevisiae/enzimologia , Transcrição Gênica , Microscopia Crioeletrônica , DNA Fúngico/metabolismo , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , RNA Ribossômico/biossíntese , Saccharomyces cerevisiae/genética
19.
Genome Biol ; 17: 47, 2016 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-26975353

RESUMO

BACKGROUND: Recent large-scale studies revealed cell-type specific proteomes. However, protein complexes, the basic functional modules of a cell, have been so far mostly considered as static entities with well-defined structures. The co-expression of their members has not been systematically charted at the protein level. RESULTS: We used measurements of protein abundance across 11 cell types and five temporal states to analyze the co-expression and the compositional variations of 182 well-characterized protein complexes. We show that although the abundance of protein complex members is generally co-regulated, a considerable fraction of all investigated protein complexes is subject to stoichiometric changes. Compositional variation is most frequently seen in complexes involved in chromatin regulation and cellular transport, and often involves paralog switching as a mechanism for the regulation of complex stoichiometry. We demonstrate that compositional signatures of variable protein complexes have discriminative power beyond individual cell states and can distinguish cancer cells from healthy ones. CONCLUSIONS: Our work demonstrates that many protein complexes contain variable members that cause distinct stoichometries and functionally fine-tune complexes spatiotemporally. Only a fraction of these compositional variations is mediated by changes in transcription and other mechanisms regulating protein abundance contribute to determine protein complex stoichiometries. Our work highlights the superior power of proteome profiles to study protein complexes and their variants across cell states.


Assuntos
Linhagem da Célula/genética , Cromatina/genética , Complexos Multiproteicos/química , Proteoma/genética , Animais , Cromatina/química , Humanos , Mamíferos , Complexos Multiproteicos/genética , Estrutura Terciária de Proteína , Transcrição Gênica
20.
Nature ; 526(7571): 140-143, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416747

RESUMO

Nuclear pore complexes are fundamental components of all eukaryotic cells that mediate nucleocytoplasmic exchange. Determining their 110-megadalton structure imposes a formidable challenge and requires in situ structural biology approaches. Of approximately 30 nucleoporins (Nups), 15 are structured and form the Y and inner-ring complexes. These two major scaffolding modules assemble in multiple copies into an eight-fold rotationally symmetric structure that fuses the inner and outer nuclear membranes to form a central channel of ~60 nm in diameter. The scaffold is decorated with transport-channel Nups that often contain phenylalanine-repeat sequences and mediate the interaction with cargo complexes. Although the architectural arrangement of parts of the Y complex has been elucidated, it is unclear how exactly it oligomerizes in situ. Here we combine cryo-electron tomography with mass spectrometry, biochemical analysis, perturbation experiments and structural modelling to generate, to our knowledge, the most comprehensive architectural model of the human nuclear pore complex to date. Our data suggest previously unknown protein interfaces across Y complexes and to inner-ring complex members. We show that the transport-channel Nup358 (also known as Ranbp2) has a previously unanticipated role in Y-complex oligomerization. Our findings blur the established boundaries between scaffold and transport-channel Nups. We conclude that, similar to coated vesicles, several copies of the same structural building block--although compositionally identical--engage in different local sets of interactions and conformations.


Assuntos
Microscopia Crioeletrônica , Complexo de Proteínas Formadoras de Poros Nucleares/química , Complexo de Proteínas Formadoras de Poros Nucleares/ultraestrutura , Poro Nuclear/química , Poro Nuclear/ultraestrutura , Sítios de Ligação , Células HeLa , Humanos , Espectrometria de Massas , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/ultraestrutura , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Conformação Proteica , Multimerização Proteica , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...